
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2009-04-17

Progressive Spatial Networks
Samuel Curren
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Curren, Samuel, "Progressive Spatial Networks" (2009). All Theses and Dissertations. 1685.
https://scholarsarchive.byu.edu/etd/1685

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1685&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1685&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1685?utm_source=scholarsarchive.byu.edu%2Fetd%2F1685&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Progressive Spatial Networks:

Learning from GPS tracklogs

by

Samuel Curren

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2009

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Samuel Curren

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Phillip J. Windley, Chair

Date Michael A. Goodrich

Date Brandon S. Plewe

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Samuel
Curren in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Phillip J. Windley
Chair, Graduate Committee

Accepted for the Department

Date Kent E. Seamons
Graduate Coordinator

Accepted for the College

Date Thomas W. Sederberg
Associate Dean, College of Physical and Mathematical
Sciences

www.manaraa.com

ABSTRACT

Digital street and trail maps are typically represented by an interconnected

network of path segments. These spatial networks are used in map creation, route

planning, and geo-location. Consumer GPS devices have become popular as a method

of collecting data for use in spatial networks. Existing methods for creating spatial

networks either require extensive hand editing or use inefficient algorithms that re-

quire re-computation when adding new data to an existing network. I demonstrate

a method for creating and maintaining spatial networks that allows for incremental

updates without complete re-computation. I also demonstrate how spatial limits on

data set growth allows networks to be updated in linear time after initial path dis-

covery. This approach allows networks to be rapidly and accurately updated using

data from consumer GPS devices.

www.manaraa.com

Contents

Contents v

1 Introduction 1

1.1 Thesis Statement . 2

2 Related Work 3

2.1 Terminology . 3

2.2 Digital Trail Libraries . 3

2.3 Mining GPS Traces for Map Refinement 5

2.4 A Theory of the Cartographic Line 5

2.5 Bayesian Updates . 6

3 Methodology 8

3.1 Variables . 9

3.2 Building the Network . 11

3.3 Update Process . 15

3.3.1 Intermediate Points . 15

3.3.2 Matching Existing Network Points 16

3.3.3 Condition Checks . 18

3.3.4 Intersections . 20

3.4 Combining Points . 24

4 Results 26

4.1 Situational Handling . 26

v

www.manaraa.com

4.2 Algorithmic Analysis . 29

4.3 Numerical Comparison . 32

4.4 Speed . 34

5 Analysis 39

5.1 Intermediate Data . 39

5.2 Spatial Limits . 40

5.3 Stream Processing . 40

5.4 Bayesian Updates . 41

5.5 Accuracy of Source Data . 41

6 Conclusion and Future Work 42

6.1 Conclusion . 42

6.2 Future Work . 43

A Debugging Tricks 44

A.1 Geographic Data Visualization . 44

A.2 Stream Processing . 46

Bibliography 48

vi

www.manaraa.com

Chapter 1

Introduction

Spatial networks, also known as electronic maps, can be very useful in informa-

tion systems, allowing such things as geo-location (finding the location of an address)

and route planning (finding the fastest route between two locations). Electronic maps

are typically represented as a path network or graph, where each segment joins other

segments at each end.

Global Positioning System (GPS) receivers have become popular as a data

collection device for spatial networks. GPS receivers use timestamped signals from

orbiting satellites to determine the receiver’s position on the earth’s surface. Orig-

inally developed for military use, these receivers are now used in vehicle navigation

systems, consumer receiver devices, and even cell phones. The decreasing cost of these

devices allows them to be included in nearly every portable device. The number of

GPS devices in use is exploding.

In addition to reporting current physical location, GPS receivers typically

record “digital breadcrumbs” of the path the device has recently traveled. This log,

called a ‘trace’ or a ‘tracklog’ is a series of timestamped latitude, longitude, and

elevation data points. This tracklog can be downloaded onto a computer for use in

mapping projects.

OpenStreetMap [3] is a project which demonstrate the usefulness of GPS track-

logs in mapping projects. OpenStreetMap allows users to add to and update street

map data in a geographical wiki format. The system allows users to upload tracklogs

1

www.manaraa.com

collected while traveling streets. Users can then edit the tracklogs by hand and add

additional information such as street names to be used on the map. While tracklogs

enable geographic data to be easily reused, hand editing tracklogs is very tedious.

An unsupervised method for combining GPS tracklogs into a map has been

proposed by Morris et al. [7]. It relies on intersections between multiple tracklogs of

the same trails to determine intersections and eliminate redundant tracklog segments.

Unfortunately, their algorithm does not easily allow data to be incrementally added

while maintaining the information of previously added tracklogs.

The need to update spatial networks with new data is being driven by the

explosion of consumer GPS devices and devices with built in wireless cards. These

devices will make large volumes of GPS data available in near real time. Having the

ability to incrementally add data to an existing path network in a computationally

efficient way is becoming an important requirement for mapping algorithms.

1.1 Thesis Statement

Spatial networks can be created and maintained in an efficient manner through the

use of Bayesian-like update methods that update networks without requiring storage

or re-computation of all source data. Using these update methods, the accuracy of

the network will improve as additional data is added.

2

www.manaraa.com

Chapter 2

Related Work

2.1 Terminology

A network in this paper refers to a collection of path segments. Path segments

are a linear sequence of points, each point consisting of a latitude, longitude, and

elevation. Each segment also has two endpoints, with each endpoint connecting to

zero or more other endpoints. Endpoints can be considered nodes on the network

graph, with segments connecting the nodes. Examples of these concepts can be seen

in Figure 2.1(a).

Data retrieved from a GPS receiver is a single segment and is commonly re-

ferred to as a tracklog. The band width [8] is the variance of the segment, or

estimation of accuracy of a point in a segment. Point Variance Distance is the

band width of a segment at each point in the segment, as seen in Figure 2.1(b).

2.2 Digital Trail Libraries

In a paper titled “Digital Trail Libraries” [7], Scott Morris, Alan Morris, and Kobus

Barnard propose an unsupervised method for reducing tracklogs into a path network.

Their method relies on combining tracklogs into a graph, where segments are created

where tracklogs intersect. This creates a graph with many small, and typically narrow,

faces. They reduce the graph so that all faces with a width less then a reduction

threshold are combined. The result of their algorithm is a path network with the

3

www.manaraa.com

(a) Basic network composition (b) Point variance distance

Figure 2.1: Terminology Diagrams

same structure that this paper proposes, and so the lessons learned and their methods

are very relevant to my research.

The main limitation of their method is the process for adding new data after

the initial computation of the network. They claim that the addition can be made

by running the algorithm again with the network and the new tracklog as source

tracklogs, but this method has several flaws. Because no information is retained about

the original tracklogs from which a segment is constructed, the algorithm improperly

favors the newly added data.

An additional limitation is the case where there are not enough tracklogs of a

particular trail segment to produce an intersection whenever there is data that should

be combined. For example, consider the case where a hiker doubles back to pick up

something lost along the trail, and then continues back up the trail after finding it.

If the tracklog does not happen to intersect the original tracklog, then an awkward

spur will be created in their trail network, instead of combining that data in with the

original tracklog. An example of this situation be seen in Figure 2.2.

Because of these limitations, all original data must be retained to be used in

the re-computation of the path network when new data is added.

4

www.manaraa.com

Figure 2.2: Close segments will not be combined unless there is an explicit intersec-
tion.

2.3 Mining GPS Traces for Map Refinement

In a paper titled “Mining GPS Traces for Map Refinement” [9], Stefan Schroedl et al.

describe a method for using GPS traces to create detailed models of roads that include

lane information and intersection travel paths. While their method also requires all

source data for a re-computation, it introduces the concept of road width. They first

establish a road center line using the source tracklogs. They then analyze the source

tracklogs to find lanes by finding clusters of tracklogs with a regular offset from the

road center line.

The concept of road width relates to the concept of the band width of a carto-

graphic line. This concept is used in my algorithm to indicate the confidence in the

position of a path segment.

2.4 A Theory of the Cartographic Line

The most fundamental work in this area is a 1976 paper entitled “A Theory of the

Cartographic Line” [8], wherein Thomas Peucker (later changed to Poiker) describes

the process of matching two lines by using the variance of the digitizing error, and

5

www.manaraa.com

matching percentage of band overlap. He points out that there are two factors that

cause two representations of the same line to differ: encoding noise and a difference

in sampling points. Although the paper does not address GPS data, these two factors

are precisely the same factors the exist in GPS tracklogs, and his ideas are directly

applicable. He also talks in the paper about the concept of line band width, which is

the width of a line computed during a generalization process. This concept of band

width is precisely what I use in the process of tracklog matching and combination.

2.5 Bayesian Updates

The concept of Bayesian updates has been around for some time, and despite its

muddied past [11], it has become a core foundational concept in computer science.

Descriptions of Bayesian principles and examples of use can be found in modern

machine learning and artificial intelligence textbooks [6] [10].

Bayes rule is commonly used to update the estimate of a value upon receiving

additional readings of that value. It is very popular in systems where readings are

noisy and accurate estimates are desired. It works by updating the probability of an

event based on the previously calculated probability and the probability of receiving

the data being evaluated.

If our hypothesis is the position of a point on the line, then the posterior

estimate of the location of that point, given new data, is the product of the prior

probability (variance of the existing point) and the likelihood function. The likelihood

function is the probability of the new data containing a point, given that our estimate

of the location of the existing point is correct.

While applying Bayes law in our research, we found that it reduced the accu-

racy estimate of the points’s location much smaller and much faster then desired. We

modified the equations to produce results that worked in our research. Consequently

we do not use the actual Bayeisn update equations, nevertheless the concepts are core

6

www.manaraa.com

to how the algorithm works. Our existing spatial network is our prior information,

newly added tracklogs become our evidence, and the posterior estimate of point lo-

cation is used to update and improve the path network itself. The actual equations

used to update network data are described in section 3.4.

7

www.manaraa.com

Chapter 3

Methodology

Existing methods [7] of creating spatial networks combine all source data into

one large graph, and then perform reductions to simplify the graph and remove re-

dundant segments.

Instead of creating the network from all input tracklogs simultaneously, I will

apply the tracklogs to the existing network one at a time. Each tracklog is applied one

point at a time in sequence. The existing network is updated based on the information

provided by the new point. Adding new data one point at a time allows us to impose

spatial limits on data set growth, resulting in a significant run-time advantage.

This method will allow a computationally fast way to add new data to a path

network, with applications in mapping, agent path discovery (robots and search and

rescue), and location based services.

A specific example of this algorithm is the process of discovering and adding

new roads to maps. When a new road is constructed, mapping service companies

typically send an agent to map the road with expensive industrial GPS equipment.

By using the algorithm presented in this paper, the company could collect data from

cheap consumer GPS navigation units in cars. The data from multiple cars can be

added into their existing spatial network quickly and will become refined as more data

is collected and processed. In addition to detecting new roads, the system would also

be capable of detecting roads no longer in use and roads that have been rerouted

during construction.

8

www.manaraa.com

3.1 Variables

This algorithm has several parameters that can be adjusted to the characteristics of

the source data. Points in our algorithm are considered to be an estimate of point

location, and are stored as a probability distribution. Each point is represented by the

mean and the variance distance of the distribution. The mean is stored as a longitude

and latitude, and the variance distance is stored as the radius around the mean with a

distance equal to two standard deviations of the distribution. I describe each variable

below and the effect that it has upon the computation of the final spatial network.

The Initial Point Variance Distance is the band width [8] applied to points

that are part of new network segments. The Point Variance Distance is used during

the search for nearby points. New points within the Variance Distance of an existing

point are typically combined with the existing point. New points that are not located

within the variance distance of existing points are typically added as part of a new

segment or an extension to an existing segment.

This value can be adjusted to control the minimum distance between segments

in the computed network. Reducing this value will allow for more detailed networks.

If the source data is fairly accurate this value can be quite smaller. If this value is

set too small for the accuracy of the source data, then network segments will begin

to appear that do not represent real trail segments, and should have been combined

with other nearby segments.

The Connected Search Factor is a multiplier used to find a connected path

between the previous point updated and the next point to be updated. If an existing

path can be found with a path distance less then the product of the direct distance

between the two points and the Connected Search Factor, then no additional segment

is created linking the two points. If no existing path is found within this limit, then an

intersection is created at the previous and next points, and a new segment is created

linking them.

9

www.manaraa.com

Figure 3.1: Connected Search Distance

The effects of this factor can be observed when data augmenting existing seg-

ments is added to the network. When the new data crosses an intersection, the

Connected Search Factor prevents small connecting segments from being created.

When this value is set too small, intersections between segments will start to turn

into a mesh of connected segments as ‘corner cutting’ connecting segments are added.

When set too large, splinter segments will begin to appear in places where the seg-

ment should be connected at both ends. Figure 3.1 shows the variables used when

calculating the Connected Search Factor.

To preserve tracklog detail when adding new points, the New Point Variance

Factor is used to shrink the variance distance of the most recently updated points.

The effect of this factor is shown in Figure 3.2. This adjustment of the most recently

updated point allows new points to be added that would normally be combined into

previous points. This factor helps preserve the detail of the collected tracklogs when

creating a new segment.

10

www.manaraa.com

Figure 3.2: New Point Variance Factor

Set at the maximum value of 1, this factor has no effect upon the variance

of the most recently added point. Set too small, and the noise present in GPS

signals will produce too much detail within each tracklog segment. A value of 0

would prevent points from ever being joined to the most recently added point. The

process of combining multiple points from the source tracklog into a single point in

the resulting segment has an inherent smoothing effect, which helps reduce the effects

of GPS receiver noise.

3.2 Building the Network

In the process of adding new trail information into an existing trail network, there

are a variety of situations which must be handled properly. I detail them here with a

description of the situation and the issues with each. Basic situations are also shown

in Figures 3.3 and 3.4.

The base situation in updating a path network is the addition of a segment.

[Figure 3.3(a)] With an empty path network, this will be the first segment added. It

11

www.manaraa.com

(a) Adding a Segment (b) Reinforcing a Segment

(c) Joining a Segment (d) Leaving a Segment

Figure 3.3: Basic composition of a network.

will also occur when a segment is added to the network in an area without any existing

segments. Areas without existing segments are simply geographic areas where none

of the existing points are within their variance distance of any of the points in the

new tracklog. When a new segment is added, the points in the source tracklog are

added, with a default variance for each point.

When a new tracklog matches an existing segment, then the tracklog data is

used to reinforce the existing segment [Figure 3.3(b)]. This will occur whenever

there is an overlap between the new tracklog and the existing trail network. The new

tracklog reinforces the existing segment, updating its position and variance in the

process. When the existing segment ends, the tracklog may match another connected

segment, in which case the new segment is reinforced with the new data. If there

are no connected segments, then new segments are added. Moving from one existing

segment to another existing segment always happens near an existing endpoint.

12

www.manaraa.com

When a newly added segment (with either a new segment or an extension

of an existing segment) joins an existing segment [Figure 3.3(c)], an intersection

between the new segment and the existing segment must be created. When joining

the middle of an existing segment, the existing segment is split into two, with a new

endpoint at the point where the new segment joins. The three segments (two existing,

one new) are then connected together. The future points of the new tracklog are then

added to the existing segment, as described previously.

If the tracklog leaves the existing segment [Figure 3.3(d)] at any place

other then an endpoint, then the existing tracklog is split, and a new segment is

created with the first endpoint connected to the two endpoints created by the split.

New points will be added to the new segment. This is similar (though in reverse) of

the situation that occurs when a new tracklog joins an existing segment in the middle.

A special case of joining or leaving a segment is where the tracklog joins or

leaves the existing segment at an endpoint. In this case, no segment is split, and the

segment currently being added is joined to the existing endpoint. This special case

will be common in a new network, as segments added by one tracklog are extended or

joined by someone who traveled further along the road or trail before heading back.

A second special case of joining a segment and leaving a segment is where

the new tracklog crosses an existing segment [Figure 3.4(a)]. While this can be

handled as first joining and then leaving the existing segment, care must be taken

that the intersection is detected even if the points of the tracklog are not close enough

to any points of the segment to be combined together.

A consideration of adding new data is that of a knot [Figure 3.4(b)] in the

tracklog. Knots are common when the GPS receiver remains in one place over time.

The noise of the GPS signal will make it appear that the position is moving randomly

around a point. It is common to apply smoothing algorithms to GPS tracklogs during

analysis, so as to avoid the problem. In my research, I subjectively found that the

13

www.manaraa.com

(a) Crossing a Segment (b) Tracklog Knots

(c) Switchbacks

Figure 3.4: Special Cases when building a network.

algorithm smoothed the data itself in the course of adding each point, making prior

smoothing unnecessary. My analysis of the smoothing results can be found in Section

3.3.4.

A special case to watch out for is the case of the switchback [Figure 3.4(c)],

where a path makes a sharp turn back on itself. This situation is common where

trails climb steep grades, and can cause the tracklog to appear as if it is backtracking

on itself. Luckily, this is only a problem when adding the segment for the first time,

since subsequent tracklogs will be combined into the existing segment. Detecting

switchbacks may be possible through the use of elevation data present in tracklogs,

or possibly through the evaluation of the heading of the next several points. If the

angle is different enough from the direction of the previous segment, then the close

points at the point of the switchback could not be combined in order to record the

proper shape of the trail. I had planned to explore these options in the course of my

research, but time and data constraints require that it be left as future work.

14

www.manaraa.com

3.3 Update Process

The process of adding new information to the path network follows a Bayesian-like

approach. The existing path network is our prior knowledge of path locations, and we

update the path network with new tracklogs. As tracklogs are added to the network,

the new data is used to add new segments and update existing segments. When

existing segments are updated, the position of the segment’s points are updated to

reflect the new data.

This approach only adds new points to the network when they describe seg-

ments not already represented. When a point matches an existing segment, then the

position of the nearest segment points are updated to reflect the newly added data

point. Only adding data when it improves the spatial network is one of the concepts

that keeps this algorithm fast and memory efficient.

3.3.1 Intermediate Points

During the process of adding each tracklog’s points to the network, we store the series

of points in a stack. At the beginning of each evaluative loop, we pop a point from

the stack, and consider it the next point to be added.

To reduce the differences caused by the order in which tracklogs are added to

the network, we first look for any points in the existing network that lie between the

last point evaluated and the next point to be evaluated. To find such an intermediate

point, we search the network segments for a point closest to the line segment formed

between the last point evaluated and the next. We take the closest existing point and

interpolate the point between the last point and next point closest to the existing

point. If the existing point is within the variance distance of the interpolated point,

then we consider it to be an intermediate point.

15

www.manaraa.com

Figure 3.5: Updating a point

When an intermediate point is found, we push the last point removed from the

processing stack back onto the stack, and continue evaluation with the interpolated

point as the next point to be evaluated.

3.3.2 Matching Existing Network Points

During evaluation of the new point, we first search the existing network for any points

for which the distance between the new point and the existing point is less then the

existing point’s variance distance. If there is more then one point, we choose the

point with the smallest variance distance. The speed of this search is improved by

first testing each network segment with a simple point bounds check. Stored with

each segment is a maximum and minimum latitude and longitude that can be used

to quickly test if a point falls within its bounds. If the new point falls within these

16

www.manaraa.com

bounds for any segment, each point in the segment is then evaluated for a potential

match.

In addition to matching existing points, we also consider interpolated points

when searching the existing network. At times, the point for which we are searching

for a match has a shorter distance from the line between two segment points then the

distance to either point. In this case, we interpolate a point on the segment between

those two closest points. The interpolated point’s position is calculated to be the point

on the line with the shortest distance to the point, and the population and variance

of the interpolated point are calculated using a function based on the variance and

population of the two closest points. This interpolated point is then evaluated as

with any point according to the process described in the previous paragraph, with

the exception that if it is chosen as the nearest point, then it is inserted in the sequence

of segment points between the points from which it was interpolated. The process

of point interpolation is demonstrated in Figure 3.6 and shown visually in Figure

3.5. Although not applied in our work, the method used to interpolate points can

be augmented with a factor that expands the variance of the interpolated point as a

function of distance from the source points used in the interpolation. In our algorithm,

we produce a distance weighted average of both population size and variance distance.

We found the process of point interpolation to be so infrequent that testing different

interpolation functions was not possible for a lack of test data.

When searching for a point, we avoid losing source tracklog detail through the

use of the New Point Variance Factor. The New Point Variance Factor reduces the

effective variance distance for the point in the network most recently updated. This

reduction of the variance distance for only the most recently updated point prevents

new points from being combined with the previous point, and allows greater detail to

be represented. The New Point Variance Factor is described in Section 3.1 and the

effects of its application can be seen in Figure 3.2.

17

www.manaraa.com

LineMag = sq r t ((B. l a t − A. l a t)ˆ2 + (B. lon − A. lon)ˆ2)

i f LineMag != 0 :
u = (((C. l a t − A. l a t) ∗ (B. l a t − A. l a t))

+ ((C. lon − A. lon) ∗ (B. lon − A. lon))) / LineMagˆ2
e l s e :

u = 0

i f u < 0 or u > 1 :
No Val id I n t e r p o l a t i o n

e l s e :
D. l a t = A. l a t + u ∗ (B. l a t − A. l a t)
D. lon = A. lon + u ∗ (B. lon − A. lon)
D. popu la t i onS i z e = A. popu la t i onS i z e

+ u∗(A. popu l a t i on s i z e − B. popu la t i onS i z e))
D. va r i anceD i s t = A. var i anceDi s t

+ u∗(A. va r i anceDi s t − B. var i anceDi s t)

Figure 3.6: Pseudo code for the interpolation of point D as a projection of point C
onto the line between point A and point B.

3.3.3 Condition Checks

After a point is found, we test for conditions that can confuse the process of combining

points. These two situations are the detection of switchbacks and the detection of

a tracklog which appears to switch to a new segment for only one point before it

switches back to the original segment. Both of these situations produce networks

which do not accurately represent the true path network.

neare s tPo int = f indNearestNetworkPoint (currentPo int)

i f l a s tPo i n t at end o f segment AND neare s tPo int != l a s tPo in t :
nextPoint = next po int in p ro c e s s i ng l i s t
nearestPointToNext = findNearestNetworkPoint (nextPoint)
i f nearestPointToNext not found

OR neare s tPo in t . segment != nearestPointToNext . segment :
neare s tPo int = Null // f o r g e t that we found a neare s tPo int

Figure 3.7: Pseudo code for detecting switchbacks and preventing undesired point
combinations.

18

www.manaraa.com

Figure 3.8: Switchback detection.

Switchback detection is performed by looking ahead one point, and finding its

closest existing network point. If the last point is at the end of a segment, the nearest

existing point to the current point is on the same segment but not at the end, and the

look-ahead point does not match any existing segment at all, then the nearest network

point is forgotten, and processing continues as if no nearest existing point had been

found. Pseudo code for this process can be found in Figure 3.7, accompanied by a

visual example of Figure 3.8. An example found within the test data set shows the

difference between not using any form of switchback detection (Figure 3.9(a)) and

using the switchback detection described in this paper (Figure 3.9(b)).

Detecting a tracklog which appears to hop to a new network segment only to

return to the same segment with the next point is detected in a similar way. If the

nearest point is on a different segment than the last point, and the look-ahead point

finds a nearest point on the same segment as the last point, then the nearest point is

19

www.manaraa.com

(a) Without Switchback Detection (b) With Switchback Detection

Figure 3.9: Switchback detection in the Progressive algorithm.

neare s tPo int = f indNearestNetworkPoint (currentPo int)

i f neare s tPo int . segment != l a s tPo in t . segment :
nextPoint = next po int in p ro c e s s i ng l i s t
nearestPointToNext = findNearestNetworkPoint (nextPoint)
i f nearestPointToNext i s found

AND la s tPo i n t . segment == nearestPointToNext . segment :
neare s tPo int = Null // f o r g e t that we found a neare s tPo int

Figure 3.10: Pseudo code for detecting tracklogs which hop to a new segment and
return the next point.

forgotten, and processing continues as if no point had been found. This situation is

found most often when segments parallel each other for a little while before joining,

common in switchbacks before they reach the point of the switchback. Pseudo code

for this process can be found in Figure 3.10.

If the nearest point was found, and the distance between the next point and

the nearest point is less then the variance distance of the nearest point, then the next

point is combined with the nearest point, as described in Section 3.4.

3.3.4 Intersections

If the segment of the nearest point is on a different segment then the last point, then

we may need to leave the previous segment (inserting an intersection if it does not

20

www.manaraa.com

already exist) and/or join the new segment (also inserting an intersection if it does

not already exist).

Inserting an intersection into a segment involves splitting the point sequences

of the segment at the desired point of intersection, creating an intersection, and

joining the old and the new segment portions together at the intersection. Care must

be taken to preserve the existing intersections at both the start and the end of the

original segment during this process.

When a segment is split and a new intersection is inserted, a new segment is

created which starts at the intersection and will be added to in further processing.

This segment is also joined to the intersection.

When adding points to existing segments, new intersections and connecting

segments are not created if the last point and the nearest point are found to be

connected through the existing network with a connected distance less then the direct

distance between the last point and the nearest point, multiplied by the Connected

Search Factor described in Section 3.1. A visual explanation of this factor and its

calculation is shown in Figure 3.11.

The connected distance for any two points is the ’walking distance’ between

those two points, and is calculated as explained by the pseudo code in Figure 3.12.

To calculate the connected distance between any two points A and B, we first

find the list of segments that connect A’s segment and B’s segment. A point’s segment

is the segment that contains the point. This list will be empty if the segments of A

and B connect directly. The FindPath() method refered to in the pseudo code is a

bounded graph search algorithm.

We start the distance calculation by computing the distance between each

pair of points between A and the end of the A’s segment. The dist() method in the

pseudo code calculates the direct distance between two points, with each point being

represented by a longitude and a latitude.

21

www.manaraa.com

Figure 3.11: Connected Search Distance

//A, B = s t a r t and end po in t s o f connected d i s t anc e measurement

intermediateSegments = FindPath (A. segment , B. segment)

connectedDistance = 0 // i n i t i a l i z e r e s u l t

f o r each po int p between A and A. segment . end :
connectedDistance += d i s t (p , p . next)

f o r each segment s in intermediateSegments :
connectedDistance += s . l ength

f o r each po int p between B. segment . end and B:
connectedDistance += d i s t (p , p . next)

// connectedDistance now holds
// the connected d i s t anc e between A and B

Figure 3.12: Pseudo code for calculating the connected distance between two points.

22

www.manaraa.com

We then calculate the sum of the lengths of the intermediate segments found

through the FindPath() method.

Finally, we calculate the length of the portion of the last segment between B

and the end of B’s segment as the sum of the distance between each pair of sucessive

points, the same way we calculated it for A.

The sum of these distances (portion of first segment, middle segments, portion

of last segment) is the connected search distance.

If a path with a connected distance less then the calculated distance can be

found, then the points are considered sufficiently connected, and no additional in-

tersections or connecting segments are required. This process prevents jumbles of

connecting segments near intersections, if the points do not happen to pass directly

through the point of intersection.

If the new point is not combined with the points (existing or interpolated) of

the current existing segment, then it will either leave the existing segment or extend

the existing segment, depending on the situation of the prior point. This process is

described in more detail in Section 3.2.

If the prior point is at the end of its segment and is not at an intersection, then

the new point is appended at the appropriate end of the segment’s point sequence. If

an intersection is present, then a new segment is created, starting at the point of the

intersection, and extended to the new point.

When the prior point is not at the end of its segment, then it must leave the

segment in the same manner described for an updated point which leaves its previous

segment. If an intersection does not exist at the point of leaving, then it is inserted,

and a new segment is created starting at the intersection and extending to the position

of the new point.

When a new point is added, it is given a Initial Point Variance Distance, and

population size of 1.

23

www.manaraa.com

A common problem of processing GPS tracklogs is properly dealing with track-

log knots. These sections of the tracklog are common when the GPS has been sitting

still for a period of time. The noise present in GPS signals causes the calculated

position to jump around, creating a ’knot’ in the tracklog. An example of a knot can

be seen in Figure 3.4(b). The process described above subjectively handles tracklog

knots very well, without prior filtering or smoothing.

3.4 Combining Points

During the early stages of this research, I had planned to use a method for updating

the stored variance for each point as you would a population of points. Due to the

complex nature of the data I was working with, I was unable to properly test this

method. I subjectively found that a population weighted average produced good

results. This method reduced the averaging effects of new points as the number of

point combinations grew, allowing the network point to settle with the addition of

new data.

I believe that my original method of updating both the mean of the point

(stored as longitude and latitude) and the variance may have merit, and leave further

study of this method of refining accuracy estimates to future work.

The pseudo code in Figure 3.13 is my adaptation of the algorithm described

by Knuth [5], who cites Welford [13]. It has been simplified to become a population

weighted average.

I use a population weighted average as the learning rate in these update equa-

tions. A population weighted average is only one of the possible learning rates ap-

propriate for use in these equations. In fact, any learning rate between zero and

one will eventually converge to the true mean, according to the convergence proof of

Watkins and Dayan [12]. In the proof presented by Watkins and Dayan, Q-Learning

algorithms converge with any learning rate α such that 0 ≤ α < 1.

24

www.manaraa.com

e x i s t i n g // e x i s t i n g po int
// p r op e r t i e s : popu l a t i on s i z e , l a t , lon , S , var i ance

new //new point to add with p r op e r t i e s : l a t , lon

e x i s t i n g . p opu l a t i on s i z e += 1
de l taLat = new . l a t − e x i s t i n g . l a t
deltaLon = new . lon − e x i s t i n g . lon
e x i s t i n g . l a t += de l taLat / e x i s t i n g . p opu l a t i on s i z e
e x i s t i n g . lon += deltaLon / e x i s t i n g . popu l a t i on s i z e

Figure 3.13: Pseudo code for updating a point.

This flexibility to choose any learning rate and achieve convergence allows for

not only static learning rates within the allowed range, but learning rates that vary

as well. Using a populated weighted average, for example, allows for a learning rate

that gradually decreases with each added data point.

The best learning rate is best chosen by the application to data. A spatial

network mapping streets might best favor a learning rate which quickly overcomes

an initial bias, then drops quickly to avoid a constantly shifting road. A hiking trail

network, on the other hand, might best allow for greater influence of new data to

allow for trails that shift over time.

25

www.manaraa.com

Chapter 4

Results

I verified the results of this algorithm by evaluating the networks compiled

from two separate sets of tracklogs.

To evaluate proper handling of intersections, trail combinations, and switch-

backs of the network I have chosen a set of trails that exist within the area just east

of Provo, Utah between Provo Canyon and Hobble Creek Canyon. This set of trails

represents a variety of situations, including areas with many duplicate trails, areas

with just a single trail, many trail junctions and switchbacks. The resulting network

was inspected to verify proper handling of segment intersections. Since the trails

used in this portion of the evaluation are familiar to the author, previous experience

with the trails and reference satellite photography will serve as the reference for these

inspections.

The objective evaluation will be performed with a set of data gathered in the

metro area of Provo. The path network created from the metro area will be compared

against accurate street centerline records [4] as a baseline.

In both the subjective and objective tests, I compare the results of my algo-

rithm with the results of using the algorithm proposed by Morris et al. [7].

4.1 Situational Handling

The dataset used for situational handling analysis was collected from user submitted

tracklogs and a selection of national forest trails downloaded from ActiveTrails.com

26

www.manaraa.com

Figure 4.1: Parallel spur in the Trail Libraries Algorithm.

[1]. The area for this dataset was chosen for the availability of duplicate trails and

the author’s familiarity with the area. This dataset contains 41 tracklogs, for a total

of 17,232 data points.

I used a variance distance of 30 meters when running the Progressive Algo-

rithm. Values higher then 30 meters tended to reduce important trail features, while

values less then this allowed small splinter branches not representative of the actual

trails.

For the Trail Libraries algorithm, I used a value of 80 meters as the reduction

threshold. For most of the network, a value of 50 meters worked just fine. Using a

value of 80 meters did combine some of the more inaccurate tracklogs into the same

segment.

27

www.manaraa.com

On nearly every situation, both algorithms handled the data properly. While

the results of each were slightly different, the output of each was a reasonable repre-

sentation of the trail.

Each algorithm had artifacts unique to the style of processing. The Trail

Libraries algorithm is particularly vulnerable to tracklogs that travel close to each

other for a time without actually intersecting each other. This condition leaves parallel

segments in places where only one trail exists. This artifact can be seen in Figure

4.1.

A similar artifact exists in the output of the progressive algorithm, although

it is caused by different conditions. To prevent ’loops’ in the tracklog, a connected

distance test is performed to determine if a new tracklog segment is added. If the

Connected Distance Factor is too large, then undesired loops appear. If it is too

small, then we observe small stubs that appear in the form of partially completed

loops, as seen in Figure 4.2. The Connected Distance Factor must be adjusted to the

dataset to minimize these problems.

While the parallel segment artifact of the Trail Libraries algorithm and the stub

artifact of the Progressive Algorithm are similar, the stub artifact is less troublesome

for two reasons. First, the size of the stub artifact is limited by the Connected Search

Factor, while the size of the parallel segment is unbounded. Second, the stub artifact

can be reduced and possibly eliminated through proper tuning of the Connected

Distance Factor, while no algorithmic adjustments can eliminate a parallel segment.

Switchbacks were handled decently well by both algorithms, but the winner is

clearly the Trail Libraries algorithm. In the absence of any parallel tracklog problems,

the output was a much better match for the actual path. In the Progressive Algorithm,

smaller variance distance values produced a better trail representation on switchbacks,

but caused problems elsewhere in the dataset. Because of the high initial variance

28

www.manaraa.com

value, some of the smaller switchbacks were compressed into a single line, as seen in

Figure 4.3.

The situation most difficult to test was the case of one tracklog crossing an-

other. The simple case in this situation finds a point on one of the tracklogs that

matches a point on the other, and this happened every time with our test data. The

more difficult situation is where the tracklogs do cross, but none of the points of the

first are near the points of the second, so no intersection is computed. This did not

occur in our tests, and is also unlikely to be found in data collected from consumer

GPS devices, unless the signal is lost during the collection of both tracklogs for an

extended period of time.

The main observable difference in quality of handling straight line segments

is the results when an inaccurate tracklog is combined with accurate data. If the

tracklogs intersect, and the width is less then the threshold of the Trail Libraries

algorithm, then the resulting segment is skewed closer to the inaccurate tracklog

quite a bit. If the width is greater then the threshold, then it is represented as two

parallel lines. In the Progressive algorithm, the segments are joined when they are

within the variance distance of each other, and split when they are not. This can

result in segments that split, rejoin, split and rejoin several times along their length.

An example of this condition is shown in Figure 4.4. While inaccurate data is not

desirable in either case, the progressive algorithm prevents bad data from producing

a major offset in segment position.

4.2 Algorithmic Analysis

Geospatial algorithms are natively O(n2), or O(m ∗ n), where m = number of ex-

isting data points and n = number of new data points. Through optimization of

search algorithms, this can be reduced to O(n log n). As neither algorithm used these

optimizations, they have been excluded from this analysis.

29

www.manaraa.com

Figure 4.2: Stub resulting from too large of a Connected Distance Factor in the
Progressive Algorithm.

Figure 4.3: Compressed switchbacks as a result of a high Initial Point Variance value
in the Progressive Algorithm.

30

www.manaraa.com

Figure 4.4: Segments partially joined in the Progressive Algorithm. Portions of the
segment were less then the variance distance and were combined.

In the Trail Libraries algorithm, m ≥ n, as new data points are added when

computing intersections between segments. When the source data is dense and many

intersections occur, m� n. Because all source points are added prior to any reduc-

tions, the algorithm performs at O(n2).

The Progressive Algorithm performs updates as points are added. When a

new point augments an existing point, no new points are added to the existing set,

allowing m to stay constant for that update. As points that fall within the variance

distance of an existing point are combined instead of added, there is a upper bound

to the number of points within a specific geographic area.

This upper bound causes the algorithm to behave as O(n2) only during the

discovery of new paths. After discovery is complete, m does not grow, and when m

is constant, the algorithm performs at O(m ∗n), which is to say linear in the number

of new data points.

The effects of this algorithmic difference can be seen in the computational

speed of processing data presented in Table 4.1. With only six tracklogs, the process-

31

www.manaraa.com

ing cost of the Trail Libraries algorithm demonstrates fast growth, and the Progressive

algorithm shows steady growth.

The speed difference is directly affected by the data set size produced by each

algorithm, shown in the dataset size table in Table 4.2. The data set size produced by

the Progressive algorithm (shown in the P column) shows that after the first tracklog

(which covers the entire area of testing) only a few additional points are added. The

Tu column of the same table shows the very rapid growth of the dataset under the

Trail Libraries algorithm.

There are only a few exceptions within the Progressive Algorithm which al-

low a point in the dataset that is within the variance distance of an existing point.

The best example of this includes switchback detection, which allows points within

variance distance to preserve the actual shape of the trail when two trails exist in

close proximity. These exceptions are only added during the process of adding a new

segment to the network. Additional points added after the first segment are combined

into existing points as normal. Because these exceptions are only added during the

discovery phase of network creation, they do not prevent m from becoming constant.

4.3 Numerical Comparison

The dataset I used for numerical evaluation comprises data from a metro area of

Provo. The dataset contains six tracklogs, for a total of 1,216 points. The tracklogs

were gathered during three separate trips in a passenger vehicle using two consumer

GPS units. The first four tracklogs (first two trips) contained complete coverage. The

fifth and sixth tracklogs (third trip) covered only a portion of the area, but contained

driving paths not previously collected. During the collection process, all traffic laws

were followed, and travel was in normal lanes of traffic. After collection, each tracklog

was edited slightly to remove the start/end data, and correct a few errors.

32

www.manaraa.com

Figure 4.5: Cumulative histogram accuracy comparison

The errors edited out of the source tracklogs in every case were the result of

traveling outside the test area, usually as a result of a wrong turn, and once as a

result of traveling through the drive-through window of a fast food restaurant for

an ice cream cone. These errors were corrected by removing the data points from

the location the tracklog left the testing area until it returned to the testing area.

As no data was available in these areas for comparison, including them would have

introduced additional error into the numerical tests.

Metro street centerline data for the designated area was extracted from a

publicly available county dataset [4]. This centerline data serves as a baseline during

comparison of the progressive algorithm output, and the output of the Trail Libraries

[7] algorithm.

When running the progressive algorithm, I used a variance distance of 50

meters. A variance distance of less then 50 produced several tracks on most streets,

and a variance distance of more then 50 combined several of the smaller blocks.

33

www.manaraa.com

For the Trail Libraries algorithm, I found a value of 80 meters as a reduction

threshold to produce the best values for the street data collected. This value stops

just short of combining small blocks into one street.

As a comparison metric, I used the Point Distance to Baseline Network, cal-

culated as the distance between each point in the computed network and the nearest

points and lines in the baseline network. This distance is either the point distance to

a point within the baseline network or the distance to a segment within the baseline

network, selecting the closest distance.

While this metric is not perfect, it does give a simple measure of the differ-

ences between the output of each algorithm. During my tests, I found the difference

between the algorithms to be insignificant. Figure 4.5 contains the cumulative his-

togram plot of both algorithms. The histogram is computed as a normalized count of

Point Distance to Network of both algorithms, and can be used to determine which

percentage of the points were within each distance from baseline network.

4.4 Speed

As both algorithms are non-deterministic, I ran the comparison between algorithms

10 times, and averaged the results. The tests were run on a 2.2 Ghz Intel Core 2 Duo

with 2 GB of RAM. While actual run times will vary between machines, these tests

demonstrate the difference in processing speed between the algorithms. The Factor

(F) column of the table in Table 4.1 shows that the difference between the algorithms

is increasing as well. Such a growth rate will soon render the Trail Libraries algorithm

infeasible of networks of any significant size.

The results shown were gathered on the numerical comparison dataset, which

demonstrates that the accuracy is similar despite the massive increase in the speed

of processing.

34

www.manaraa.com

The difference in speed and the increasing factor between the two algorithms

can be explained with a look at the processing steps taken by each algorithm. Table

4.2 lists the size of the source dataset, the intermediate and final datasets of the Trail

Libraries algorithm, and the final size of the Progressive algorithm. The numbers

listed are the number of segment points present in the dataset. The size of the source

dataset is cumulative, representing the number of points processed when that number

of source files is used in the analysis.

The process used by the Trail Libraries algorithm involves combining all source

tracklogs and points into a single graph. During this process, all overlapping segment

intersections are identified, and an intersection is created there joining all of the

appropriate segments. Creating an intersection adds more points to the dataset, as

represented by the increasing numbers shown in the Tu column of Table 4.2. This

process of creating a single graph can explain the growth of the computation times

shown in Table 4.1. The extra points created during the first phase of processing

are never reduced or eliminated from the final dataset, resulting in a dataset that is

larger then the original every time. These extra points also lengthen the processing

times.

The Progressive algorithm uses a process that only adds new points when they

add additional information to the final spatial network. The results of this process can

be seen in the substantially lower numbers of the resulting dataset size. Even as new

data is added, the data set only grows slightly as the data is refined and updated.

The advantage of a small dataset is one of the advantages of a stream processing

approach, as it simplifies both the processing of new data and reduces the size of the

final dataset.

Although no numerical accuracy comparison was performed on the situational

handling dataset, the difference in processing time is even more remarkable. The

35

www.manaraa.com

Progressive algorithm completed in 15.36 seconds, while the Trail Libraries Algorithm

required 784.40 seconds to complete.

36

www.manaraa.com

Num P(s) T(s) F
1 0.22 2.06 9.24
2 0.68 14.10 20.80
3 1.29 33.01 25.67
4 2.02 79.00 39.05
5 2.81 113.37 40.37
6 3.18 174.53 54.82

Table 4.1: Speed comparison of the Progressive Algorithm (P) and the Trail Libraries
Algorithm (T) measured in seconds, of an increasing number of tracklogs. The Factor
(F) between the algorithm’s times is also listed.

Figure 4.6: Graph of Table 4.1

37

www.manaraa.com

Num S Tu Tr P
1 337 525 407 183
2 532 1918 725 220
3 794 3844 1100 240
4 931 6417 1792 250
5 1144 7970 1982 261
6 1216 9458 2220 271

Table 4.2: Comparison of dataset size between the Source Data (S), the Trail Libraries
Algorithm before reduction (Tu) and after reduction (Tr), and the Progressive Algo-
rithm (P)

Figure 4.7: Graph of Table 4.2

38

www.manaraa.com

Chapter 5

Analysis

While I failed to prove some of the properties of the Progressive Algorithm

that I had originally planned to, my work demonstrates three powerful principles.

These are the value of intermediate data, the algorithmic benefits of spatial data

limits, and the viability of a stream processing approach for geographic data. I also

gained insight into the use of Bayesian updates and the importance of source data

accuracy.

5.1 Intermediate Data

The algorithm I’ve constructed relies on the storage of intermediate data that is

used in future calculations. Each time I update an existing point, I increase the

population counter stored with the point. This small piece of additional data allows

me to perform a population weighted average when updating the location of the point.

This concept could be applied to the Trail Libraries [7] algorithm to overcome its bias

toward newly added data. If each point in their network contained a measure of how

many original points had been averaged together previously, then a weighted average

could be produced without any significant increase in algorithm complexity.

Population size is not the only intermediate variable that might be useful in

calculating geographic networks. With future research into Bayesian [6][10] updates

of each point’s location, the variance distance can also be stored as an intermediate

value. Elevation data is another example of intermediate information that may not

39

www.manaraa.com

be needed output of the algorithm, but can be used in processing. Elevation data

might be useful, for example, in keeping airplane flight paths at different elevations

separate.

5.2 Spatial Limits

My application of spatial limits on dataset size is perhaps the most valuable insight of

this research. While I applied spatial limits as part of my stream processing approach,

they could also be applied in a filter process prior to the main computation. This

concept is very powerful in the area of geographic data, as there is a natural limit to

the number of data points of a particular resolution within a geographic area.

Reducing the number of data points can reduce the effectiveness of the algo-

rithm, but the use of intermediate values provides the ability to overcome this effect.

The benefit demonstrated with the very small data set used in my research

shows great promise. As the growth rate of the data set is the factor, the benefits of

this approach increase dramatically with system and data set size.

5.3 Stream Processing

My work also demonstrates the viability of data stream processing for computation

of geographic data. The speed of processing demonstrated in section 4.4 indicates

that such processing would be possible in real time on a resource constrained device

such as a smart phone or personal GPS device, even with complex datasets. It also

demonstrates the possibility of using centralized servers to compute spatial networks

from data streamed from remote mobile devices, and computed centrally into a spatial

network. An example application of such central processing would be mapping the

walking travel paths taken by fans leaving a stadium. Data provided by smart phones

in possession of some of the fans can be computed into a spatial network, and then

40

www.manaraa.com

fed back to the phone to provide efficient walking directions to the user’s car based

on current flow of fans and the traffic arrangements made for the game.

5.4 Bayesian Updates

During the planning phases of this research, I had planned to use an application of

Bayes rule (described in Section 2.5) to refine the data as additional data was added.

Using the Bayesian update process did not return the results expected. Testing and

tuning the point update process was difficult due to the complexity of the situational

data of the numerical analysis dataset as described in Section 3.4. The high complex-

ity to segment length ratio of the metro data set made it difficult to test and observe

the effects without causing unintended consequences. Selecting a dataset with lower

situational complexity would aid further research into this process.

I believe that the concept of using Bayesian processes to update has merit,

but must be studied further to determine its applicability.

5.5 Accuracy of Source Data

The variable accuracy of the source data did surprise me. While most of the data was

fairly accurate, a few of the tracklog sections were significantly inaccurate. Dealing

with some inaccurate data proved to be more difficult then I had previously believed.

The inaccurate data made it necessary to expand the variance distance, which

caused problems elsewhere in the dataset. Using a single variance distance for the

entire operation is what led to most of this struggle. Using a form of user feedback to

locally adjust the variance distance could avoid this problem and aid in the production

of more accurate results.

41

www.manaraa.com

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Spatial Networks are valuable information tools and can be computed from tracklogs

collected by consumer GPS devices. Updating spatial networks with new data in

an efficient manner is an important requirement pushed by the proliferation of GPS

devices capable of transmitting data in real time.

I demonstrated a progressive, stream processing approach to updating spatial

networks. This method shows significant speed improvements over existing methods.

Adding data to the network is significantly faster, and by a factor which increases as

the network grows. The increase in speed is partially due to the reduced complexity

of the algorithm results.

I demonstrated the utility of spatial limits on data set size. By imposing limits

on data set growth, spatial update algorithms can run in linear time.

I failed to prove that accuracy will improve as additional data is added, but

did demonstrate that the accuracy matches that of existing methods.

This thesis demonstrates the viability of a stream processing approach to ge-

ographic information processing, explores the utility of storing intermediate data to

facilitate fast processing, and provides a platform for further study of geographic

processing of spatial networks.

42

www.manaraa.com

6.2 Future Work

Further study of the process of updating the variance distance of points in the spatial

network could yield improvements to the accuracy of updating spatial networks, as

well as enable reporting of accuracy estimates.

Observing the difficulty of choosing the proper variables for an entire network

hints at the possibility of using human input for local adjustments to variance distance

and other algorithm variables.

The algorithm as demonstrated is greedy as it changes network topology. After

a segment is created, it is never combined into another segment even if it is within

the variance distance of another segment. Adding some evaluation to the network

to enable topological changes to the network would help refine some of the problems

caused by this situation.

Study of the learning rate [12] during the point combination process could

yield faster converting, future preferring, and other types of convergence.

Storing additional meta data, such as the direction of travel, could yield ad-

ditional information about the computed network. This additional information can

further describe network segments, including direction of travel or average speed.

43

www.manaraa.com

Appendix A

Debugging Tricks

Visualizing geographic data can be difficult, and visualizing the intermediate

steps of a geographic stream processing can be even more so. Rather then build

my own visualization tools, I output data in the form of KML files, which can be

viewed and explored in Google Earth [2]. This dynamic environment allows a much

easier way to evaluate geographic data then any tool likely to be built for academic

evaluation. The product is available free of charge, and carries no restriction which

would prevent its use in academic research.

A.1 Geographic Data Visualization

KML files easily represent points and paths typical in geographic data. Points have a

latitude, longitude, and an elevation, and can be augmented with an icon to represent

point type. Other information about a point can be embedded in the name and

description fields available for each point. In my work, I displayed the population size

of each point in the description field.

I used points to represent both segment points and segment intersections. In

the case of intersections, I used the description field to list the identifiers of con-

nected segments. This helped me to visually verify the correctness of the graph I was

building.

44

www.manaraa.com

Segments can be given a name, as well as a line style, which includes color and

width. I used the color of segments to separate the output of different algorithms,

allowing visual comparison of similar data sets.

Google Earth contains two methods for viewing KML files. The first is to

load the file into Google Earth directly. A copy of the data is stored within its

database, making this a great method for taking snapshots of output data. After

import, the data can be renamed to assist in identification. The second method is

called a Network Link. While network links typically point to an online service, you

can also point them at a file on the local system. By pointing the network link at

the current output file of the system under development, the user can easily reload

the current data in the file. Network links can be refreshed manually, automatically

when the current view moves, or with a timer. I used the view change method, which

allowed me to adjust the view slightly when I wanted the data reloaded from disk.

Using the timer method sometimes caused file conflicts if Google Earth tried to reload

the data while it was being written.

Distance between points is often an important aspect of geographic data, and

Google Earth contains two ways to approximate distances on datasets. Visible on the

bottom left corner of the screen is a scale bar that adjusts according to the current

zoom level. Zooming in on the distance to be measured allows use of the scale tool

as a rudimentary ruler for quick distance checks. A more accurate measurement may

be taken by using the Ruler tool, available in the tool bar or the Tools menu.

Another useful feature of KML files is the ability to embed a timestamp into

the points in the file. When timestamp elements are present, a time slider control is

displayed, allowing the user to filter the data to a specific time period, and even scrub

the control back and forth to see prior or subsequent data. While the timestamps of

my collected data were not useful for debugging, I output the last updated timestamp

for each data point. This allowed me to follow the progress of the stream processing

45

www.manaraa.com

algorithm by scrubbing the control back and forth. It also allowed me to pinpoint

the most recently updated points, which was invaluable for debugging errors in the

process. The time granularity of the scrubbing control is limited to seconds. My

algorithm processed points fast enough that the timestamp of each point was nearly

identical. To make it easier to scrub through the points, I kept an artificial clock,

which I advanced one second each time a point was updated. The timestamps were

only used to show progression in time, and so the false time values did not cause any

problems for evaluation.

A.2 Stream Processing

Viewing the output is very useful for development and debugging, but it is sometimes

helpful or necessary to follow the processing of each data point as it flows through

the processing code. To allow such analysis, I used the step debugger available in

combination with the KML output features described above. Because I was interested

in inspecting the processing of data in a small geographical area, I created code to

support a ’debug window’ defined by a latitude and longitude bounding box. When

the algorithm processed a point within the debug window, it output a debug message

and also dumped the current data to the KML file linked to Google Earth. By setting

a breakpoint on the debug message that only ran when within the window, I was able

to fast forward the processing to the point I desired to inspect. I also set a flag upon

entering the window, so that the pauses for debugging continued past the window.

Using my debugger, I could clear the flag to continue fast forwarding. I also set a

limit on the number of tracklogs that must be processed before entering the window,

making it easy to fast forward to the 5th or 6th time the window was entered.

Each time the breakpoint was hit, I could refresh the data in Google Earth,

inspect the current data, and then step through the algorithm one line at a time. This

allowed me to verify the correct processing of the data points under inspection. It

46

www.manaraa.com

also allowed me to gather the values of intermediate variables. By copying the values

of intermediate variables and pasting them into the search box of Google Earth, I

was able to easily visualize the data used during the processing of each point as well

as the final result.

Without these debugging visualization tools, building and testing the algo-

rithm described in this paper would have been nearly impossible.

47

www.manaraa.com

Bibliography

[1] ActiveTrails - http://www.activetrails.com/.

[2] Google Earth - http://earth.google.com/.

[3] OpenStreetMap - http://www.openstreetmap.com.

[4] Utah County GIS Data - http://ims2.co.utah.ut.us/website/download1/data1.cfm.

[5] D. Knuth. The art of computer programming. Vol. 2: Seminumerical algorithms.

Third Edition. Reading, page 232, 1981.

[6] R. Michalski, J. Carbonell, and T. Mitchell. Machine Learning: An Artificial

Intelligence Approach. Morgan Kaufmann, 1986.

[7] S. Morris, A. Morris, and K. Barnard. Digital trail libraries. Digital Libraries,

2004. Proceedings of the 2004 Joint ACM/IEEE Conference on, pages 63–71,

2004.

[8] T. Peucker. A theory of the cartographic line. International Yearbook of Car-

tography, 16:134–143, 1976.

[9] S. Rogers, P. Langley, and C. Wilson. Mining GPS data to augment road models.

Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 104–113, 1999.

[10] S. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice-

Hall, Inc. Upper Saddle River, NJ, USA, 1995.

[11] S. Stigler. Who discovered Bayess theorem. American Statistician, 37:290–296,

1983.

[12] C. Watkins and P. Dayan. Q-Learning. Machine Learning, 8(3):279–292, 1992.

[13] B. Welford. Note on a Method for Calculating Corrected Sums of Squares and

Products. Technometrics, 4(3):419–420, 1962.

48

	Brigham Young University
	BYU ScholarsArchive
	2009-04-17

	Progressive Spatial Networks
	Samuel Curren
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Contents
	1 Introduction
	1.1 Thesis Statement

	2 Related Work
	2.1 Terminology
	2.2 Digital Trail Libraries
	2.3 Mining GPS Traces for Map Refinement
	2.4 A Theory of the Cartographic Line
	2.5 Bayesian Updates

	3 Methodology
	3.1 Variables
	3.2 Building the Network
	3.3 Update Process
	3.3.1 Intermediate Points
	3.3.2 Matching Existing Network Points
	3.3.3 Condition Checks
	3.3.4 Intersections

	3.4 Combining Points

	4 Results
	4.1 Situational Handling
	4.2 Algorithmic Analysis
	4.3 Numerical Comparison
	4.4 Speed

	5 Analysis
	5.1 Intermediate Data
	5.2 Spatial Limits
	5.3 Stream Processing
	5.4 Bayesian Updates
	5.5 Accuracy of Source Data

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Appendix A Debugging Tricks
	A.1 Geographic Data Visualization
	A.2 Stream Processing

	Bibliography

